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Abstract—In a two dissimilar materials joint the stresses at the intersection of the edges and the
interface are singular for elastic material behaviour. For a joint with edge tractions the stresses near
the singular point are the sum of singular terms and regular terms. Earlier investigations have shown
that the singular stress exponents are the same for a joint with free edge and edges with tractions.
In the literatures only the singular term has been studied. The emphasis in this paper is placed on
giving an explicit form of the regular stress terms as a function of the edge tractions, the material
properties and the geometry of the joint. It is shown that the regular terms are important also for
the stress distribution near the singular point. © 1997 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In many technical areas dissimilar materials have to be joined together. One example is the
ceramic to metal joint to combine the wear resistance, high temperature strength and
thermal or electrical resistance of the ceramic with the ductility of the metal. Due to the
difference in the elastic properties and the thermal expansion coefficients of the ceramic
and the metal high stresses occur at the intersection of the edges and the interface of the
joint under mechanical or thermal loading. Changes in temperature cause thermal stresses
due to the different thermal expansion coefficients. This is especially important if joining is
done at high temperatures. In such cases thermal stresses may exceed the strength of the
ceramic and cause failure.

In the sense of linear elasticity, for most material combinations stress singularity exists
at the intersection of the edges and the interface of the joint (denoted as singular point). In
the last 10 years there were many investigations about the analysis of the stress singularity
in a joint under mechanical or thermal loading. Some of them are about the dependence of
the order of the singularity in the stress field near the singular point on the wedge angles
and on the material constants for the joint with free edges (see Williams, 1952 ; Hein and
Erdogan, 1971 ; Dempsey and Sinclair, 1981; van Vroonhoven, 1992; Bogy and Wang,
1971 ; Vasilopoulos, 1988 ; Theocaris, 1974), for the joint with edge tractions (see Bogy,
1971) and for the joint with free-fix or with fix-fix edges (see Williams, 1952 ; Dempsey and
Sinclair, 1981). Some of them are about the stress distribution near the singular point in a
joint with free edges, i.e. without tractions on the edges (Munz and Yang, 1992 ; Knesl et
al., 1991 ; Blanchard and Ghoniem, 1989 ; Blanchard and Ghoniem, 1990; Suga et al.,
1989). For a joint with free edge the stresses near the singular point can be described by

N

K,
- = - f 0 5]
O',},(r, 9) kgl (r/L)mAf’Ik(g)_i_o’u ( )

for mechanical and thermal loadings (coordinate system see Fig. 1). The published papers
showed that in the near field of the singular point also the regular term o,,(0), i.e. the r
independent stress term, makes an important contribution to the stress distribution,
especially, for thermal loading.
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Fig. 1. Investigated geometry and coordinates.
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In this paper a joint is considered (see Fig. 1a), which is subjected to three different
types of loading:

(a) remote mechanical loading (R);
(b) thermal loading, e.g. a homogeneous change of temperature in the joint (TH);
(c) edge tractions (T).

For (a) and (b) the solutions are well known. The stress distribution (not only the order of
the singularity) near the singular point for case (c) and for the combination of cases (a),
(b) and (c¢) will be given in this paper. They can be described by

N

0. 0) = 3~ (0)+ IO+ (O)+ Y (/L) T0).
k=1 (r/ L) =1

All parameters in this equation, with the exception of the factor K}, can be determined
analytically. Equations for determination of the regular terms o}, (6) and ¢,(6) will be
presented in this paper. These regular terms are very important to satisfy the boundary
conditions for a joint with edge tractions and they make a non-negligible contribution to
the stress distribution near the singular point. The quantities wy, f;(6) and o' (6) are the
same as those in a joint with free edge (see Bogy, 1971; Munz and Yang, 1994; Munz
et al,, 1993; Yang and Munz, 1992; Yang and Munz, 1994). The factor K, receives a
contribution from all three types of loading. Therefore, K, can be broken down into

K, = K} + Ki + KM,

Two examples for mechanical and thermal loadings will be shown to evidence the good
agreement of the stress distributions calculated with the finite element method (FEM) and
from this analytical form.

2. FUNDAMENTAL EQUATIONS

For a two-dimensional stress singularity problem the stress function ®,(r, 8) written as

CD]»(}’, 6) = Z r(z_“”‘) {Ajk Sin(a),ﬂ) +Bjk COS(a)kB) + C/k sin [(2 —(Uk)g] +Djk COS [(2—wk)0]}
k

(D
is normally used. The subscript j stands for the two materials (j = 1, 2).
The stresses can be calculated from eqn (1) by:
100 1 3@
g, = ; 5 + r—2 Eé; (23.)
il )
%=z (2b)
(100
Tro = — 5(; %> (2c)

Substituting eqn (1) into egn (2) yields
o, (r,0) = Z r~ (1 —w ) { A 2+ ;) sin(w, 8) + B (2 + wy) cos(wyt)
k

—Cp2— ) sin[Q—w)8] — Dy 2— ;) cos [2— w0} (3a)
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0,0(r, 0) = Y r (22— ) (1 — ) { Ay sin(w,0) + By, cos(w,6)
k
+Cysin [2—w)0]+ Dy cos[2—wy)0]}  (3b)
Too(r, 0) = =) r (1 — ) { A, cos(w,0) — By sin(w,6)
k
+Cu(2—wy)cos[C—w)0l—Dup(2—w)sin[2—w)0]} (j=1,2). (3¢)
From eqn (3) we can see that if w = 0 the stress term is independent of the distance r. But

the stress term according to @ = 0 cannot be obtained directly from eqn (3). They have the
following form (see Munz et al. 1993) :

6,0(0) = 2(4,00+ Bjy — Cyo 5in(20) — D cos(26)) (4a)
T 90(0) = 2(A;00+ By + Cjy sin(20) + D, cos(26)) (4b)
Ty (0) = =26 Ao+ Cpo €05(20)— Dy sin(20))  (j=1,2). (4c)

Therefore, for all cases stresses can be calculated from the summation of eqns (3) and (4),
i.e.

o, (r, 0) = Y r (1 — ) {42 +w,) sin(w,0) + B (2 + w,) cos(w,H)

~ i@~ o) sin [(2— 0)0] — D2 — ) c0s [~ )01} +0,(0)  (52)
001, 0) = ¥ 12— ) (1 — ) { Ay sin(;) + By cos(e,0)

+ Cyi sin [(2— )0+ Dy cos [(2— ) 0]} +6,00(0)  (5b)

Tpo(r, 0) = = 1™ (1 — ) {4 0y cos(w,0) — By, sin(w;0)
%

+Cr(2—wp)cos [2—w )] — Dy 2—w,) sin [(2— @ )01} +6,00(0)  (5¢)

where w, # 0. Using the relations between stresses, strains and displacements, equations
for determination of displacements can be obtained. For plane stress under thermal and
mechanical loadings they are

(1 —ay)

E.

g

u(r,0) =Y {A4[2(1 —v)) + (14 v)] sin(w,0)

+ By [2(1 —v)) + i (1 +v))] cos(w,0)

—Cp(14+v)2—w,) sin [(2—w,)6]

=Dy (1+v)(2—w,) cos [(2—w,)0]}

+reo THuy,(r,0) (6a)

(1—w,)

¥
v,(r,0) = ; z
7

{Ajk[Z(l —v)+ (2 —w){(1 +v;)] cos(w,0)

= By[2(1 —v) + (2— o) (1 +v,)] sin(w,0)

—Cp (1 +v) (2 —wy) cos [(2—w )]

+ D, (14+v)(2—wy) sin [(2—,)0]} +v,0(r, 0) (6b)

where u,,(r,8) and v,0(r, @) are displacements according to w =0 (i.e. according to the
stresses given in eqn (4)), the other terms in eqn (6) with w, # 0. In eqn (6) the quantity
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is the thermal expansion coefficient, G is the shcar modulus, E is the Young’s modulus, v is
the Poisson’s ratio and 7T is the temperature difference (7 = T\ —T,). The terms u,o(r, 0)
and v;,(r, #) have the form (see Munz et a/., 1993)

u(r, 0) = % {A,0(1— v)0+ Bio(1 —v;) — Cio(14+v,) sin(20) — D,y (14 v,) cos(28)}  (6¢c)

7

2r ) 44,
00(r. 0) = = { = Co(1+1)) c08(20) + Do (1 +)) sin@0)} + Fyor — =" rin (1) (6d)
J g
under the condition u = v = 0 forr = 0.
In this paper it is assumed that the tractions on the edges can be described by a
polynomial. They have the following form:

9 = 6]
N,
gy =pi+ ) Ar (7)
i=1
Ny
T,9=l1+23,rj (8)
j=1
9 = 92
M,
oo =p:+ Y, G &)
k=1
M,
Tp = 12 -+ Z D-Irl (10)

that means that the tractions oy, 7,, at 0 = 6, and 8 = 0, can have different orders of
polynomial. We take M = max{N,, N,, M,, M.}, then the boundary conditions for this
problem are:

for 0 = 0,:
M -—
a10(r, 01) :P1+Z A (11a)
/=1
M —
Ti,0(r, 01) =t,+ZB,r’ (11b)
=1
for 0 =0,:
M -
0207, 0;) = po+ Z G (Ile)
=1
Mo
Tap(r, 02) = 6,4+ ) Dy (11d)
=1
for8 =0°:
010(r,0) = 650(r,0),  11,0(r,0) = 12,0(r,0) (1le,f)
HI(V,O) = uz(r,o), Ul(rso) = Uz(”’o)- (llg’h)

where 4, =0 (for/=N,+1to M), B,=0(forl=N,+1to M), C,=0(for/=M,+1to
M), D, =0 (for /= M,+1 to M).
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These cight conditions lead to the following cight equations for plane stress:

Z”ﬂu"(z_wk)(l —w){ A sin(wed,) + By, cos(w,0,)
3

M
+ Ciisin[2—w)60,]1+ Dy cos [2—w,)0,]} + 0150 = p1 + Z Ayt (12a)
=

Z r~ O (w, — 1) {40, cos(w8,) — By sin(ew, 0,)

k

M
+C i 2=w)cos [(2—w)b,]— D, (2—w,) sin [(z_wk)el]} + T =4+ Z B (12b)
/=1

Z P2 — o ) (1 — ) { Aoy sin(wy0,) 4 By cos(w,0;)

k

M
+ Cop sin [(2— )0,]+ Dy c0s [Q—w,) 051} + 0260 = P2+ z Cr (12¢)
=i

Z r~ O (wy — 1) { Ay cos(@wyly) — By sin(w,6,)
%

+ Cor (2 — ) €08 [(2— ;) 0] — Dy (2 — ) sin [(2— w )0, 1} + 720,00 = 12+ i Dy (12d)

=1

2 {2 w) (=00 Byt Di) ~ 2= 0) (1 - w) (B + D2y}

+0160(0) —0200(0) =0 (12e)

Z'ﬁw‘(l — ) { Ao+ CQ— @) — Ay — Co (2 — @) | +T1,90(0) — T2,40(0) = 0 (12f)
%

Yt B2 —v) o (14 V)] = Dyp(1+v) 2 — o)

— By [2(1=vy) + @ (1 +v)] + Do (1 +v2) 2 — )}
Fuyo(r,0) =1z (r,0) = rT+ Ej (0 —2y)  (12g)

Yor' o Apl2(1—v) + Q=) (4] = Crp(1+v1) 2 — )

k

—Auf2(1 =)+ Q=) (1 4+v)] + Cor (1 +v2) (2 =)} +014(r,0) =030 (r,0) =0 (12h)

where u = E,/E, and w, # 0.
To solve eqn (12} different cases should be considered

(I) r-independent stress term ;
(I1I) r-dependent stress terms, (a) w, = —1, —2,...,—/4,...,—M;(b)0 < w, < 1.

(I) The case of the r-independent stress term.
From eqn (12) we can get equations to determine the r-independent stress term as
follows :

Gre0(81) = p) (13a)
Tiwo(B1) =t (13b)
G200(0:) = ps (13¢)
Tor0(62) = 15 (13d)

0100(0) — 0240 (0) = 0 (13e)
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T1r00(0) ~ T2,90(0) = 0 (13f)
uyo(r,0) —uyo(r,0) = rT+ Ey (o — 1) (13g)
Vy9(r, 0) —0,0(r,0) = 0. (13h)

Solving eqn (13) the coefficients 4,y, B)y, Cjp, D)o in eqn (4) can be determined analytically.
From eqn (13) we can sce that the solution is made of two parts; one is the contribution
of the mechanical tractions py, 1,, p, and t,, the other is the contribution by thermal loading
with the temperature difference T. The solution according to a constant mechanical traction
is denoted as a7, () and, according to thermal loading, as o) (6). The term o (0) is known
from the earlier investigations (see Munz et al., 1993 ; Yang and Munz, 1992; Yang and
Munz, 1994). Here only the solution for mechanical traction will be given, i.e. in eqn (13)
there is 7 = 0.

Generally, for an arbitrary geometry 8, and 0, to determine the coefficients 4;,, B,
Cy, Djp an 8 x 8 system of linear equations has to be solved directly. The disadvantage of
solving directly an 8 x 8 linear equations system is that the relationship between the solution
of the eqn (13), the material properties, e.g. the Dundurs’ parameters, the joint angles 6,
60, and the loading is not in an explicit form. For some special geometries, e.g. 6, = — 0, or
8, —0, = 180° (6, < 0), the solution of eqn (13) can be simplified. As an example in the
following the solution of eqn (13) for a joint with 6, = —0, = 90° will be given. The
coeflicients in eqn (4) can be calculated from 4, = 4%/Z, By, = B%/Z, Cjy = C%/Z and
D;, = D%/Z with

g

Z =4(u—=Dl(—1D=2p(+1D)] (14a)

Ato =206, —)[(u— 1) = 2B(u+ 1)} (14b)

By =(1—p){p 2B(u+ 1) — Qu—D]+p.} + g(h —L)(2Bp+28-3u+1)  (i4c)

Chy = (1 @u—1) =)= 1) = 25(u+ 1] (14d)
Dty =(1=){p> —p RBG+ D + 11} + (2= 1) (u+ D 2B+ 1) (14e)
A%y = 2ty )= 1)~ 2B+ )] (14f)

BYy =(1=p){—upi +p:2B(u+ D +2—pl} + glu(tz_tl)(2ﬁﬂ_ﬂ+2ﬂ+3) (14g)
Cho = [hp+E=2)I[(p—1) =2p(u+1)] (14h)

DYy =(u—D{piu+p:[2B(u+1) —pl} + gu(h —5)(u+1EZF-1) (141)

where Z # 0 and f§ is one Dundurs parameter. The Dundurs parameters are defined as

m, —Km,

my+Km,

(my—2) —x(m, —2)
m, + Kkm,

p=

with
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_&
K= G,
m= T for plane stress

4(1—v) for plane strain.

The relation between y and a is

_1+oz
T l—a

i

Using the coefficients calculated with eqn (14), the stress term o7, (0) can be obtained from
eqn (4). For the case Z = 0 and 4} # 0 or B # 0 or C¥ # 0 or D} # 0 there is a log(r)
singularity. This wiil be discussed in a separate paper.

(IT) Thecaseof w, = —1,—-2,...,—4,...,— M.
For each o, = —/eqn (12) has the following form:
. : 4,
— Ay sin(l,) + By, cos(l0,) + C\,;sin [(2+ 1)0,]+ D,;cos [(2+l)91]} = m
(15a)
Ay lcos(l0,) + B sin(l6,) — C,(2+ ) cos [2+1)8,]
B
+D,2+)sin[(2+D8,]} = 1+’1 (15b)
— Ao, 8in(l6,) + By, c0s(10,) + Cy,y sin [(2+ )6,]+ Dy cos [(2+DE,]} = W(II—H) (15¢)
D
Az dcos(16,) + Byl sin(l6,) — Cy(2+ 1) cos [+ D 0,]+ Do (2+ 1) sin [(2+ 1)6,] = 1+I
(15d)
(Bi+D1)—(By+Dy) =0 (15¢)
— A+ CuR+D)+Ayl—Cy(2+1) =0 (15f)

B2 —v)) =10 +v)]—Du(1+v)2+1)
—Byl2(1 —v,) = I(1+v)]+ Dy (14+v,)2+0) =0 (15g)
Aup2(0=v)+CQ+DA +v)] = Cu(14+v)(24+))
—Ay2(0 =v))+CH+DA +v)]+Co(1 +v,)2+1) = 0. (15h)

By solving eqn (15) the coefficients 4, B;, C;, D, can be determined analytically. Generally,
for an arbitrary geometry with 8, and 6, an 8 x 8 system of linear equations has to be solved
directly. To see the relationship between the solution of eqn (15) and the Dundurs’s
parameters «, f we need to describe the solution in an explicit form. For an arbitrary
geometry with 8, and 6, the explicit form is very long and complicated. The coefficients for
a joint with 8, = —8, = 90° will be given in the following. We take

A% Bj Ct D¥
A, == B,=—2, C,==, D,=—-".
v Z,- i ZI H Z/ 7 ZI

1 = 2n—1 for odd numbers of 1 and 1 = 2n for even numbers of 1. They can be calculated
from
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Z, =256n(2n+1){4n* 1* B> —8n*p2 B+ (4n* — )p® +8n° up?
—(8n* = Du+dn? B> +8n*f+4n’ —1}  (16a0)
A¥ =32Qn+ D)(=1)"{4n* 2 f* A— (4n—1)2np* BA+ 2n—1)20p0° 4
+8n*up* A+ 2nupA— (4n+1)2n— Dud +2nupC
—2n—DuC+4n*B*A+8n° A+ (@n” —1)A+2npC+ (2n—1)C}  (16bo)
BY =322n+1)(= )" " {4n* 1P B> B— (4n+1)2nu* BB+ (2n+1)2np’ B
+8n*uf*>B—2nupB— (4n— 1)(2n+ 1)uB—2nupD
+@n+VD)uD+4n*B*B+8n’ BB+ (4n* — 1)B—2npD—(2n+1)D}  (16co0)
C = 32(= 1) {(4n2 Qn— V)2 B A= 2[(4n* —3n+2) 2n+ 1) — 202 pA
+ (4n* = 1)2np* A+ 812 (2n— Hup? A—2nQ2n+ DupA— (4n* — 1) (dn—1pud
—2n@2n+ DupC+ (@2 — YuC+ Qn—1)an* > A+ 8n* 2n— 1A
+(2n—1’Q2n+ 1)4-2n2n+ 1)BC— (4n* —1)C} (16do)
DY = 32(— 1) {4r* @+ )@ P B—2AQ2n+ 1)(@n> —3n+2) +d4n* — 22 pB
+(@n> —1)2np?> B+ 80° 2n+ Dpup? B+ 2n(2n— DupB— (4n> —1)(4n+1)uB
+2nQn—NDpupD— (@n* —HuD+4n* 2n+ )2 B+8n°2n+1)5B
+@n—1)(2n+ 1) B+2nQ2n— 1D+ (4n* — 1) D (16¢0)
A% = 32020+ 1) (= 1) 20 A — Qn— D)2 A — a2y 2 C
+8n 1 BC— (4n> — D> C+2nuPA+ 2n— Dud —8n° up*C
+20puBC + (dn+ 1) (2n— 1)uC —dn? B C—2n(dn— 1) BC—2n2n—1)C} (16f0)
B =32(2n+ D)(—1)"(2np* BB— 2n+ 1) y* B+4n** B D
—8n* 2D+ (4n* — ) > D+ 2nufB+ 2n+ D)uB+8n°uf* D
+2nufD —(4n—1)2n+ DHuD +4n* 2 D+ 2n(4n+ 1) D +2n(2n+ 1) D} (16g0)
Ct = 32(= 1)V 2nQn+ D) BA— (2 — V)i A +4n? Qn— 12 B2 C
— 82 (2n— N BC+ 2n -1 2n+ D2 C+2nQ2n+ DupA + (An> — Hud
872 2n—1)uf2 C+2n(2n+ NuBC— (dn—1) (dn* — ) uC +4n>2n— 1) > C
+2[Q2n+ )4 —3n+2)=2)pC+ 2n(@dn> — 1) C) (16ho)
D% = 32(— 1y 2n(2n— )2 B — (4n® — ) B— 4> 2n+ )2 B2 D
+8n* 2n+ DD — Cn—1)2n+ 12> D+ 2n(2n— upB+ (4n° — 1)uB
—8n*(2n+ Dup?D+2n2n—DupD+ (4n* — 1) (dn+ DubD —4n*2n+ 1)’ D
—2[@n+1)(@n = 3n+2) + 40> —2)pD - 2n(dn* — 1) )} (16i0)

for the odd numbers of 1 and

Z, = 256(n+ 1> n{dn(n+ D2 2 — 2020+ 1212 B+ @n(n+ 1)+ D> + Q2+ 1) —2)up?
—2Q2n+ D u+dn(n+ D> +2Q2n+ 1) B+4n(n+ 1)+ 1} (16ae)
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(n+1)?
(2n+1)

+8n(n+ DHup?A+2(m+ DupA— (4n+ 1) (2n+Dpd —2(n+ HupC
+ Qn4 DuC+an(n+ 1) A+22n+1)pA

A% =128

(=D {dn(n+ DA —2n(4n+3) A+ (2n+ 1)2np* A

F@n(n+ D)+ D A—2(m+1)EC—2n+1)C} (16be)
BY =128 g:_:)l’;(—1)"{4n(n+1)u2ﬁ23——2[n(4n+5)+1]y2ﬁ§+(2n+ 2+ )2 B

+8n(n+ Dup?B—2nupB— @n+3)2n+ DuB+2nupD
—Qn+ DYuD+4n(n+ 1) B+2(2n+1)*BB
+(4n(n+ 1)+ 1) B+ 20D+ 2n+1)D) (16ce)

(n+Dn
(2n+1)

+20m+ D+ Dt A+ 8n(n+ Dt A—2(n+ DupAd— @n+3)2n+ Hud
+2(n+ DupC—Cn+ DHuC+ (n+ anp2 A+ 2(dn(n+ 1)+ 1) A
+@nn+ 1)+ 1DA+2(n+1DPC+(2n+1)C} (16de)

Ct =128 (— 1)y {4n(n+1)p? B2A—2[n(dn+ 5)+ 2]u? B4

(n+Dn
2n+1)

+Q2n+1)2np* B+ 8n(n+ Dup? B+ 2nufB— (2n+1)(4n+)ubB

(= 1)V {an(n+ 1) 2 B—2(4n +3n+ 1)’ BB

—2nuBD+ 2n+Dub+4n(n+1)*B+2(4n(n+1)+1)BB
+(@n(n+ 1)+ 1)B—2nD— (2n+1)D} (16ee)

(n+1)?
2n+1)

—2@n(n+ 1)+ Dp?*BC+@n(n+ 1)+ D C+2(mn+ DpupA+ (2n+ )ud
+8n(n+ Dup>C—2(n+ HupC—@n+1)2n+ HuC

A% =128 (—=1)"{2(n+ D’ A —Qn+ D A+4dn(n+ 1) 2 C

+4n(n+1)*C+2n(4n+3)BC+2n(2n+1)C} (16fe)
* n(n+l) A 20 20 2020
B% =128 (2n+1)(_1) {=2np*BB+(2n+ )y’ B+4n(n+ 1)’ D

—2Q2n+1)*@2pD+ (dn(n+ 1)+ )’ D —2nupB— (2n+1)uB
+8n(n+ 1up2 D+ 2nuBD — (dn+3)2n+ DD
Fan(n+ 2D +2n(dn+5)+ DD +2(n+1)(2n+1)D) (16g¢)

n(n+1)
2n+1)

—2(@n(n+ 1)+ D)2 BC+ @nn+ 1)+ D2 C—2n+ Dpfd— n+ )ud
+8n(n+Dup*C+2(n+DHupC—@n+3)2n+ DHuC+4nn+1)p*C
1 2n(dn+5) +21BC+ 2+ 1) Cn+ 1)C} (16he)

nn+1)
@2n+1)

Ct =128

(=D =2(m+ D BA+2n+ )p* A +4n(n+ > B2 C

D% = 128

(=D D 2np*BB—2n+ )? B+4n(n+ )’ 2D
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—2(4n(n+ D)+ Dp*BD+ (4n(n+ 1)+ D D+ 2nufB+ (2n+ uB

+8n(n+ DHup?D—2nuBD— (2n+ 1)(4n+ DHuD+4n(n+ 1) D

+2[4n* +3n+ 118D+ 2n(2n+1)D} (16ie)
for the even numbers of 1. Ineqn (16),if Z,=0and A¥# 0or Bf#£ 0 or CF# 0 or D+ 0,

there is a log(r) singularity, which will be discussed in a separate paper.

Then the stress term according to @, = —/is ¥'67,(f) with

37,(0) = (1 +1){ — A,2— 1) sin(16) + B,(2— 1) cos(0)
— 2+ sin[Q+D0]— D2+ cos [+ D0} (17a)
&5,(0) =+ D(1+1){ — A, sin(10) + B, cos(16)
+ Cysin[(24+1)0]+ Dy cos [(2+D6]}  (17b)
The(8) = (1 +1){A;l cos(I0) + B,/ sin(/0)
— CyQ2+1) cos [+ D] — D2+ D sin[2+D0]).  (176)

It should be noted that 7,(6) do not have the unit of stress, the total r'¢7,(6) has a unit of
stress. Therefore, the quantity 67,(f) is normalized and the definition

051(6) = Ll&ijl(a)

is used. Where L is a characteristic length of the joint (see Fig. 1b). Then the stress term
according to w, = —1!1is (r/L)'a{,(0) and o],(0) has a unit of stress.

(III) The case of 0 < w, < 1.

For this case the stress term is denoted as o7,(r, #) because for this w; stress singularity
exists. The stress term according to 0 < w; < | has the same form as that for the same joint
with a free edge (see Yang and Munz, 1995), i.c.

N

Ky
oy(r,0) = k; Wf,.,k(e) (18a)

for the real eigenvalue of the problem and

N

K
o;(r, 0) = k; v Lk)wk {cos [p In(r/L)] f55(6) +sin [p In(r/ L)) [ (0) } (18b)

for the complex eigenvalue of the problem. In eqn (18) w, is the real part of the eigenvalue,
Py 1s the imaginary part of the eigenvalue, fi;. /5 and f3; are angular functions, # is the
number of the singular terms, L is a characteristic length of the joint (see Fig. 1b). All
parameters in eqn (18), except the factor K, (which is called the stress intensity factor), can
be determined analytically. Generally, the stress intensity factor should be determined by a
numerical method, e.g. the finite element method (FEM) (see Munz and Yang, 1993). In
eqn (18) the factor K, receives a contribution from all three types of loading. Therefore, K,
can be separated as

K. = K} +Ki + K"

Finally, in a two dissimilar materials joint under the three types loading the stresses near
the singular point can be calculated from
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M
7;(r, 0) = aii(r, 0) + a5 (0) + 050 (0) + 3 (r{LY 7y (0)
=1

N

Kk M
= 2 Fu @+ (O +0oi )+ Y (/LY a}(0) (19)
k=1 {r/ LYk =1

for the real eigenvalue. In eqn (19) the terms o3(r, 0) and o} (9) are the same as those for
the same joint with free edge but with different K-factor, the term a5 (6) can be calculated
from eqns (4) and (14), the term a},(r, 8) can be obtained from eqns (16) and (17) for a
joint with 6, = —6, = 90°.
3. EXAMPLES

In this section two examples will be presented for a joint with edge tractions under
remote mechanical loading and thermal loading to show how eqn (19) is used to describe
the stress distribution near the singular point. The geometry of the joint used and the
coordinates are given in Fig. 1b, where H,/L = H,/L = 2. The material properties are :

E, =3300MPa, v, =0.35, x, =25x10"%/K
E, =330MPa, v, =035 o, =85x10"%/K.

The assumed edge tractions are

for 6 = 6, = 90°

6, = 14+2r+3r* +4r* +5r* + 6r° MPa,
t=1MPa (20a)

and

ford=0,= —-90°

o, = 1+2r+3r* +4r* 4 5r* +6r° MPa,
1= —1MPa. (20b)

For the given tractions the terms ¢, (#) and ¢/,(6) in eqn (19) have been calculated from

eqns (4), (14), (16) and (17) and are shown in Tables 1-3 for components o,, o4 and 7,4 Iin
different directions (for L = 1 and plane strain).

Table i. The terms ¢},(8) (1 = 0) and ¢(8) in different directions (in MPa)

@ in [°] 0 45 90 —~45 —90

1=0 2.5708 0.8194 —3.0741 —0.4028 0.7656
1=1,in2x 0.0 0.1833 0.4815 0.5238 —-0.4815
1=2,in3x —0.2593 0.2593 —0.2593 0.2593 ~0.2593
1=3in4x 0.0 0.2476 —0.3501 0.4595 —0.6499
1=4,in5x 0.1489 0.2128 —0.5745 0.2128 —0.5745
1=5,in6x 0.0 0.0104 —0.5941 —0.2461 —0.7392

Table 2. The terms afy(8) (1 = 0) and o5,(6) in different directions (in MPa)

0in [ 0 45 90 —45 90
1=0 0.4166 0.5972 1.0 1.8194 1.0
l=1in2x 0.0 0.8642 1.0 0.1571 1.0
1=2in3x —0.4815 —0.2593 1.0 ~0.2593 1.0
1=3,in4x 0.0 —0.7071 1.0 ~0.7071 1.0
1=4,in5x 0.2766 —0.6383 1.0 —0.6383 1.0
1=5in6x 0.0 —0.2974 1.0 0.0617 1.0
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Table 3. The terms /44 (9) (1 = 0) and t),(6) in different directions (in MPa)

fin [] 0 45 90 —45 —90
1=0 1.2222 —0.9259 1.0 0.2283 -1.0
1=1,in2x —0.4815 —0.1833 0.0 0.5238 0.0
1=2in3x 0.0 —0.3704 0.0 0.3704 0.0
1=3indx 0.2998 —0.2120 0.0 —0.2120 0.0
1=4in5x 0.0 03617 0.0 ~0.3617 0.0
1 =5, in6x —0.2177 0.5636 0.0 —0.6149 0.0

Table 4. The angular functions f,(6) in different directions

0in [ 0 45 90 —45 —90
1.0 —0.2487 0.4787 2.0443 0.8244 0.9809
20 1.0 0.6143 0.0 0.3826 0.0
Fu® —0.2768 0.6345 0.0 —0.4809 0.0

The stress exponent w and the angular functions f;;(f) in eqn (19) can be obtained
from the equations given in the paper (see Munz and Yang, 1994). For this geometry
(0, = — 0, = 90°) and material combination there is only one singular term in eqn (19) and
the stress exponent (i.e. the order of singularity) is @ = 0.2259. The angular functions f,(0)
in different directions are shown in Table 4.

To determine the stress intensity factor K in eqn (19), the finite element method (FEM)
is used for the stress analysis in the joint. In the FE-calculation the used element is normal
eight nodes element and the mesh needs not be very fine. The FE-code used is ABAQUS.
In eqn (19) the terms ¢4 (8), 67, and 67,(6) can be calculated analytically and the left side
isknown from the FE-calculation. Therefore, for one singular term eqn (19) can be rewritten
as

O = TP 0= 6) ~ ) —f (r/LY5(0) @n

for each point with (r, §). From eqn (21) the stress intensity factor K can be determined by
using the least squares method.

3.1. Joint under remote mechanical loading
The assumed remote mechanical loading on the upper and lower surfaces is

* o3 n
g, = o*sin| 5, x

with ¢* = 1 MPa. For this remote mechanical loading and the tractions given in eqn (20)
the total stress intensity factor calculated from eqn (21) is K = —4.273 MPa. On the other
hand we have made two other calculations. One is the joint with only the assumed remote
mechanical loading, the corresponding factor is K® = 0.390 MPa. The other is the joint
with only the edge tractions, the corresponding factor is K' = —4.669 MPa. For this
loading (without thermal loading) the term a7 (6) in eqn (19) is zero and therefore, there
is K™ = 0. It can be seen that the total factor X is equal to K™+ K"+ K®. That means
that the obtained K-factors have a good accuracy, because the factors K, K™, KT, K® are
from independent calculations.

Now with the known factor K we can calculate the stress distribution at arbitrary
position near the singular point from eqn (19). A comparison of the stress distribution near
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| I I | I [ 1
2 4 6 1E-03 2 4 6 1E-02

r/L along the line 6 = 45

-

-30 = | | I — T T T
2 4 6 1E-03 2 4 6 1E-02

r/L along the line § = —45

Fig. 2. A comparison of the stresses calculated from FEM (as point) and eqn (19) (as solid line)
along the line with 6 = 45° and 8 = —45° for mechanical loading.

the singular point calculated from FEM and with eqn (19) is presented in Figs 2 and 3 in
different directions. It can be seen that in the range of r/L < 0.01 they arein good agreement.

3.2. Joint under thermal loading

The thermal loading is a homogeneous change of temperature of 7= —200 K in the
joint. For this thermal loading the term o (6) in eqn (19) can be calculated from the
equations given in the papers (see Munz et al., 1993 ; Yang & Munz, 1994) and it is given
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o., MPa

U]

-100 T 1 1 1T 17 1 T 11 T L
1E-04 2 4 1E-03 2 4 1E-02 2 4 1E-01

r/L along the line 6 = 90

20

O MPa

-20 —

=30 ~

=50 =TT T | T | T T T
1E-04 2 4 1E-03 2 4 1E-02 2 4 1E-01

r/L along the line 8 = -90

Fig. 3. A comparison of the stresses calculated from FEM (as point) and eqn (19) (as solid line)
along the line with 8 = 90° and 8 = — 90° for mechanical loading.

in Table 5. For this thermal loading and the given tractions in eqn (20) the total stress
intensity factor calculated from egn (21) is K = —3.903 MPa.

On the other hand we have made two other calculations. One is the joint with only
temperature change (—200 K) the obtained corresponding factor is K™ = 0.759 MPa. The
other is the joint with only the edge tractions, the corresponding factor is KT = —4.669
MPa. Here there is no remote mechanical loading therefore, K® = 0. For this example it
can be also seen that K = K™ 4+ KT 4+ KR is satisfied.
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Table 5. The term o7 (f) in different directions (in MPa)

fin [ 0 45 90 —45 —-90
a,o(0) 0.0 —0.6286 —1.2572 —0.6286 —1.2572
a0(0) —1.2572 —0.6286 0.0 —0.6286 0.0
()] 0.0 —0.6286 0.0 0.6286 0.0
0 —
Ur
Ty
T
~-25 =7 T T T T 1 | S
2 4 6 1E-03 2 4 6 1E-02

r/L along the line 8 = 45

Fig. 4. A comparison of the stresses calculated from FEM (as point) and eqn (19) (as solid line)
along the line with 6 = 45° for thermal loading.

A comparison of the stress distribution near the singular point calculated from FEM
and with eqn (19) is presented in Figs 4 and 35 in different directions. It can be seen that in
the range of r/L < 0.01 they are in good agreement.

In eqn (19) all quantities, with the exception of K, can be determined analytically.
For a joint subjected to three different types of loading: (a) remote mechanical loading;;
(b) thermal loading, e.g. a homogeneous change in temperature; (c) edge tractions, there
are two ways to determine the unknown factor K.

(I) One FE-calculation for the joint with all three types loading, using eqn (21) for
determination of factor K;

(II) if for each type of loading the factor K®, KT, K™ are known we can calculate the
total K-factor from K = K*+ K"+ K™,

In two papers (seec Munz and Yang, 1992 ; Tilscher er al., 1995) the authors have given
some empirical relations to determine K® and K™ for any material combination and
geometry (H,/H,) without requiring a FE-calculation. If KT is known from an empirical
relation the total factor K can be obtained without any further FE-calculation. Empirical
relation for the factor K" will be presented in a separate paper.

4. CONCLUSION
A joint is considered which is subjected to three different types of loading:

(a) remote mechanical loading;
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20 -

.., MPa

ij

=50 T T T T1 T 1T 11 T T 1
1E-04 2 4 1E-03 2 4 1E-02 2 4 1E-01

r/L along the line 6 = -90

Fig. 5. A comparison of the stresses calculated from FEM (as point) and eqn (19) (as solid line)
along the line with # = —90° for thermal loading.

(b) thermal loading, e.g. a homogeneous change in temperature ;
(c) edge tractions.

The stresses near the singular point in such a joint can be described by

N

K M
000) = 3 SO+ O+ RO+ X (DO,

The quantities wy, f;x(8) and ¢ () are the same as those in a joint with a free edge and
they can be determined analytically. The regular stress terms o}, () and o},(0) are very
important as well for the stress distribution near the singular point in a joint with edge
tractions. Only using the singular terms to describe the stress distribution near the singular
point is not enough. An explicit form for the regular stress terms, o7 (0) and 6[,(6), is given
as a function of the material properties, the geometry of the joint and the edge tractions.

Comparisons of the stress distribution near the singular point calculated from FEM
and with eqn (19) have been presented. In the range of r/L < 0.01 they are in good
agreement. The results have shown that the regular terms are very important to satisfy
the boundary conditions for a joint with edge tractions and they make a non-negligible
contribution to the stress distribution near the singular point.
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